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Abstract

A model implementation of the solution of an unsteady nonlinear

reaction-diffusion on a SAMR grid using SAMRAI has been developed.

This model implementation illustrates the use of new capabilities for im-

plicit timestepping and solution of large-scale systems of nonlinear equa-

tions using implementations of inexact Newton methods found in KINSOL

and PETSc. This document provides a detailed description of the imple-

mentation.

1 Introduction

Adaptive mesh refinement (AMR) is a computational approach that concen-
trates effort in regions where it is most needed by using a finer grid only where
enhanced resolution is necessary. Numerous AMR algorithms for hyperbolic
problems with explicit timestepping and some classes of elliptic problems have
been described. However more general nonlinear problems that may also involve
implicit timestepping have not received as much attention.

Structured adaptive mesh refinement (SAMR) is an AMR strategy in which
the computational mesh is organized as a hierarchy of nested levels, each of
which is a union of rectangular regions. SAMRAI is a software framework devel-
oped at LLNL/CASC that supports the use of SAMR methods in a wide variety
of problems in computational science and engineering. SAMRAI includes sophis-
ticated numerical algorithms that provide complete implementations for some
classes of problems, such as systems of hyperbolic conservation laws. Interfaces
to other high quality numerical libraries, such as hypre, KINSOL, and PETSc,
either exist or are under development. Support for implicit timestepping has
also recently been completed.

Model applications are being created in concert with the development of
these new capabilities. These applications serve to fill out the functionality of
the new capabilities, test the implementations, and demonstrate the viability
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of the ideas behind the new capabilities. The model applications also serve as
demonstration codes that other application developers can use to create software
to solve other problems. This document describes one such model application
in detail.

This document is organized as follows. Model problem specification, in-
cluding discretization on a SAMR grid, is discussed in §2. This discussion is
purposefully generic, in order to motivate the software requirements that fol-
low. A mapping of this problem specification onto SAMRAI data structures
appears in §3. Interfaces to implementations of user-defined methods for im-
plicit timestepping and the nonlinear solvers are described in §4.

2 Problem Specification

The problem solved in this model application is a modified version of the non-
linear Bratu problem:

∂u

∂t
= ∇ · D∇u + λeu + f(x, t, u), t ≥ 0, x = (x, y, z) ∈ Ω (1)

where Ω = [0, 1]3. Here, the diffusion coefficient D can depend on space and
time.1 There are three features in (1) that are not present in the classical Bratu
problem:

1. the classical Bratu problem is a steady-state problem;

2. the classical Bratu problem has uniform diffusivity;

3. the source term f is not present in the classical Bratu problem.

This latter feature was added to allow the solution u to be specified so that
correctness of the implementation and accuracy of the solution could be assessed.

Specification of the problem is completed with initial and boundary condi-
tions. Although general initial and boundary values are possible, only u(x, 0) =
0 and u(x, t) = 0,x ∈ ∂Ω are implemented.

A SAMR grid may be represented as a grid hierarchy. The hierarchy consists
of a number of levels, with level 0 indicating the coarsest level. Each level con-
sists of a union of rectangular regions, or patches, at the same resolution. This
hierarchical representation allows operations on the hierarchy to be decomposed
into operations on individual patches.

Cells in all levels are referenced relative to a global index space. Thus, level
0 is referenced relative to the base discretization: if level 0 is an nx × ny × nz

grid, then cells are indexed according to i = 0, . . . , nx − 1, j = 0, . . . , ny − 1,
and k = 0, . . . , nz − 1. If a refinement ratio of 2 is used, then level 1 is indexed
according to i = 0, . . . , 2nx − 1, j = 0, . . . , 2ny − 1, and k = 0, . . . , 2nz − 1.
Depending on how the level 0 grid is refined, only a subset of these indices
actually represents the solution.

1It can also depend on u, but this is not implemented.
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An example of a grid hierarchy appears in Figure 1, which shows a SAMR
grid with three levels and two patches on each of the two refinement levels.
The coarsest level is defined on an index space with lower left corner (0, 0) and
upper right corner (7, 7). The first refinement level is defined on index space
with lower left corner (0, 0) and upper right corner (15, 15), and consists of two
rectangular patches. One has lower left corner (2, 4) and upper right corner
(7, 9) and the other has lower left corner (8, 6) and upper right corner (13, 15).
Finally the finest level is defined on an index space with lower left corner (0, 0)
and upper right corner (31, 31) and also consists of two patches. One has lower
left corner (8, 14) and upper right corner (21, 17) and the other has lower left
corner (18, 18) and upper right corner (25, 31).

Figure 1: Example of a multilevel SAMR grid with three levels.

The solution on a grid hierarchy is defined at spatial locations that corre-
spond to the finest available grid. Thus, all cells on the finest grid are part of
the solution. All cells on the next coarser level that have not been refined to the
next finer level are also part of the solution. This process continues until level
0 is reached. At the risk of being less precise, another way to say this is that
the solution is defined only in cells that have not been refined. Values defined
in cells that have been refined only serve to represent the level as a union of
rectangles, and are usually defined as averages of values on the next finer grid.
These cells can also be used to accelerate the convergence of iterative solution
procedures in a manner similar in spirit to multigrid methods.

Discretization on a grid with a single resolution is described first. Following
this, modifications for extending the discretization to a grid hierarchy are dis-
cussed. The section concludes with a description of how boundary conditions
may be treated.
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2.1 Single grid discretization

Implicit discretization of (1) in time and rearrangement leads to

u(n+1) − u(n) − ∆t
(

∇ · D∇u(n+1) + λeu(n+1)

+ f(x, tn+1, u
(n+1))

)

= 0

where ∆t is the current time step and superscript (n) refers to the n-th timestep.
Thus the solution is advanced in time by solving the nonlinear equation

F (u; u(n)) = u − u(n) − ∆t (∇ · D∇u + λeu + f(x, tn+1, u)) = 0. (2)

A discrete problem is obtained by subdividing Ω into cells Ωijk and seeking the
solution in the discrete form

u
(n)
ijk ≈ u(xi, yj , zk, tn)

where (xi, yj , zk) is the center of Ωijk . Integrating (2) over Ωijk gives

Fijk ≡

∫

Ωijk

F (u; u(n)) dV

=

∫

Ωijk

(u − u(n)) dV (3)

−∆t

∫

Ωijk

∇ · D∇u dV (4)

−∆t

∫

Ωijk

λeu dV (5)

−∆t

∫

Ωijk

f(x, tn, u) dV. (6)

The integrals (3), (5) and (6) are approximated by
∫

Ωijk

(u − u(n)) dV ≈ (uijk − u
(n)
ijk)∆V, (7)

∫

Ωijk

λeu dV ≈ λeuijk ∆V, (8)

∫

Ωijk

f(x, t, u) dV ≈ f(xi, yj , zk, tn, uijk)∆V, (9)

where ∆V ≡ ∆x∆y∆z is the volume of Ωijk .
The integral (4) is approximated by appealing to the divergence theorem:
∫

Ωijk

∇ · D∇u dV =

∫

∂Ωijk

D∇u · n dA ≈

(

Di+ 1
2 ,j,k(ui+1,j,k − ui,j,k) − Di− 1

2 ,j,k(ui,j,k − ui−1,j,k)
) ∆y∆z

∆x

+
(

Di,j+ 1
2 ,k(ui,j+1,k − ui,j,k) − Di,j− 1

2 ,k(ui,j,k − ui,j−1,k)
) ∆x∆z

∆y

+
(

Di,j,k+ 1
2
(ui,j,k+1 − ui,j,k) − Di,j,k− 1

2
(ui,j,k − ui,j,k−1)

) ∆x∆y

∆z
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where n is the unit outward-facing normal to ∂Ωijk .
The full discrete system is the sum of (7), (10), (8) and (9). This is not

written down here explicitly in the interest of saving space.

Remark 2.1 Observe that the discrete system may be written

F (u; u(n)) = Au + λeu + f(x, t, u)

where A is a matrix with seven nonzero diagonals (for the 3D case). Using
stencil notation, the east, west, north, south, top, bottom, and center weights
are given respectively by

aei,j,k = Di+ 1
2 ,j,k

∆y∆z

∆x
,

awi,j,k = Di− 1
2 ,j,k

∆y∆z

∆x
,

ani,j,k = Di,j+ 1
2 ,k

∆x∆z

∆y
,

asi,j,k = Di,j− 1
2 ,k

∆x∆z

∆y
,

ati,j,k = Di,j,k+ 1
2

∆x∆y

∆z
,

abi,j,k = Di,j,k− 1
2

∆x∆y

∆z
,

aci,j,k = −(ati,j,k + abi,j,k + ani,j,k + asi,j,k + aei,j,k + awi,j,k).

Remark 2.2 Observe that the Jacobian of the discrete system is

F ′(u; u(n)) = A + λeu +
∂f

∂u
(x, t, u). (10)

Remark 2.3 For discretization on a SAMR grid, it is useful to regard the six
contributions in the approximation of

∫

Ωijk
∇·D∇u dV as fluxes of u across the

respective faces of Ωijk .

2.2 Multilevel discretization

Except for cells at interfaces between coarse and fine levels, the problem can be
discretized on each level exactly as described in §2.1. Of the four contributions
to the discrete version of the problem, (3), (5) and (6) can be approximated with
(7), (8) and (9) respectively. Only the approximation of (4) needs modification,
and this modification only needs to be made on the sides of Ωijk that are
adjacent to one or more cells that reside at a different level of resolution. This
situation, using a two-dimensional example, is depicted in Figure 2.

Consider first the fine side of the interface. Data from the coarse level is
needed to define the flux on the west side of fine cells. This can be accomplished
by interpolating data at the coarser resolution to a location in a ghost cell at
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Figure 2: Compuational cells at an interface between coarse and fine levels.

the finer resolution. This interpolation can be done in a variety of ways, with
the caveat that the choice affects the accuracy of the solution in the fine region.
For example, linear interpolation on the coarse side of the interface leads to the
discretization of [1, 2]. Once the fluxes are defined, the approximation (10) can
be computed by differencing the fluxes over the cells in the usual way.

Consider next the coarse side of the interface. Since coarse data is defined in
the coarse cell underlying the four fine cells, calculation of fluxes on the coarse
level can proceed in the usual fashion. However, the flux computed at the east
face of the coarse cell will not in general be equal to the sum of the fluxes
computed at the west faces of the adjacent fine cells. To correct this, the flux at
the east side of the coarse cell is replaced by the sum of the fluxes on the west
sides of the fine cells. More precisely,

∫

∂Ω2h

ic+ 1
2

,jc

Dux dA =

∫

∂Ωh

if −

1
2

,jf

Dux dA +

∫

∂Ωh

if −

1
2

,jf +1

Dux dA,

where (ic, jc) is the index of the coarse cell and (if , jf ), (if , jf +1) are indices of
the two fine cells adjacent to the coarse/fine interface. The notations h and 2h

respectively denote the fine and coarse meshes. Extension to three dimensions,
in which four fine face fluxes must be accumulated, is straightforward.

Once the flux is computed and corrected on the faces of the control volumes
of the coarse levels, the approximation (10) can be computed by differencing
the fluxes over the cells in the usual way.

While this description lacks complete detail, the general nature of what needs
to be done at coarse/fine interfaces is clear. Summarizing:

• on the fine side of the coarse/fine interface, ghost cell information must
be interpolated from the next coarser level;

• on the coarse side of the coarse/fine interface, fluxes on interfaces adjacent
to the fine level must be matched with the sum of the fluxes from adjacent
fine cell faces.

Remark 2.4 SAMRAI provides a set of predefined CoarsenOperators and
RefineOperators that can be used to perform the needed interpolations. User-
defined averaging operations can also be employed.
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Remark 2.5 Using data from the coarse grid as Dirichlet boundary conditions
on the next finer level ensures continuity of the solution across the coarse/fine
interface. The flux matching process prevents spurious sources at coarse/fine
interfaces.

2.3 Treatment of boundary conditions

The discussion of the multilevel discretization revealed the need for ghost cells,
where they were used to provide storage for data interpolated from the next
coarser level resolution. They also can be used to provide storage for data at
the same level of resolution that resides on a different patch. Finally, they can be
used to provide a uniform mechanism for treating physical boundary conditions,
which can be implemented in a variety of ways. With boundary values defined
on cell faces that reside at the physical boundary, an extrapolation procedure
can be used to compute values that are placed in ghost cells; this has the
disadvantage that every time the solution is changed in a cell adjacent to the
physical boundary, the ghost cell value must also be changed. Alternatively,
the computation of the flux on the physical boundary can be adjusted to reflect
the different grid spacing; this has the disadvantage of dropping the order of
the discretization by one at the physical boundary. Another alternative is to
compute the flux at the physical boundary by fitting a quadratic normal to the
physical boundary and taking its derivative at the physical boundary; this can
handle either Neuman or Dirichlet boundary conditions and preserves the order
of the discretization at the physical boundary, but requires data from two cells
in the direction normal to the boundary.

3 Mapping onto SAMRAI data structures

Special care is needed to design software for solving problems on SAMR grids.
While it is straightforward to map data defined on a single, global grid onto
linear memory space, there is no clear way to do this for a multilevel grid
hierarchy. Further, SAMR grids can change dynamically during the course of the
computation. Implementation for distributed memory computer architectures
adds another degree of complexity.

One way to address this situation is to separate the concept of a variable
from the associated storage. SAMRAI allows users to specify variables in a man-
ner that is independent of the associated storage. Data on individual patches
is mapped to linear memory space lexicographically, and lookup mechanisms
provide access to this storage on a per-level, per-patch basis. The decompo-
sition of grid levels into patches maps naturally onto distributed memory, by
assigning each patch to a single processor. In addition, SAMRAI provides a
means to associate multiple usage contexts with each variable. This simplifies
naming conventions and allows storage associated with variables to be managed
in groups. Finally, a uniform mechanism for moving data among patches at the
same or different levels of resolution is provided.
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3.1 Variables

The variables and grid centerings needed are listed in Table 1. The solution,
nonlinear term, and artificial source are all cell-centered variables. The fluxes
that must be computed reside on cell faces. They can be represented with either
a FaceVariable or a SideVariable; since the former uses a permuted index
convention, the latter was chosen. Note that the SideVariables encapsulate
data on all sides of the cells, and have d components (where d is the dimension of
the problem), corresponding to faces normal to each of the coordinate directions.

Quantity Role Type Name

u solution CellVariable d solution

D diffusion coefficient SideVariable d diffusion coef

D∇u fluxes SideVariable d flux

λeu nonlinear term CellVariable d exponential term

f artificial source CellVariable d source term

Table 1: List of variables.

One additional variable that does not appear on this list is needed. As
noted in §2.2, once fluxes on a coarse level are computed, the values that reside
at coarse/fine interfaces must be replaced by the sum of the fine fluxes from
adjacent cells at the next finer level. Fluxes from the finer level can be com-
puted and saved in an OutersideVariable, which resides only on the outer
faces of patches. This data can subsequently be averaged to the corresponding
locations on the next coarser level. These variables have 2d components, cor-
responding to two sides in each of the coordinate directions. This variable is
labeled d coarse fine flux.

3.2 Contexts

During the course of a simulation, some variables must play multiple roles.
For example, in an unsteady problem, storage for the solution at the previous,
current, and next timesteps might be used. Some storage is used only for scratch
space, playing a role only during intermediate stages of a calculation. Common
practice is to use more descriptive names: for example multiple timesteps might
be labeled u old, u, and u new. SAMRAI provides VariableContexts for this
purpose. Table 2 lists the contexts used in this model application.

Actual storage is not associated with variables alone; data is allocated using
a variable-context pair. This pair is uniquely associated with a single integer
descriptor index that is maintained in a VariableDatabase. Actual storage is
associated with each patch in the SAMR grid together with a variable-context
pair (or, equivalently, with a patch together with a descriptor index).

As noted in §2.3, ghost cells provide a convenient and uniform mechanism for
treating off-patch data dependencies. The need for ghost cells affects the amount
of storage needed for a (variable, context). Ghost cells must be used judiciously
to avoid unnecessary storage overhead. Here, only the scratch context of the
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Variable Context Ghost Cells Role

d solution current 0 holds the current time step
d solution new 0 holds the next time step
d solution scratch 1 scratch space for computation
d diffusion coef scratch 0 intermediate quantity
d flux scratch 0 intermediate quantity
d exponential term scratch 0 intermediate quantity
d source term scratch 0 intermediate quantity
d coarse fine flux scratch 0 intermediate quantity
d jacobian a scratch 0 intermediate quantity
d jacobian b scratch 0 intermediate quantity
d precond a scratch 0 intermediate quantity
d precond b scratch 0 intermediate quantity

Table 2: List of contexts.

d solution variable has a layer of ghost cells. The roles played by this particular
variable-context pair are described in §§3.3 and 4.3.1.

3.3 Data movement

Data must be moved among different storage locations at various stages of the
calculation. For example, ghost cells in the approximate solution must be filled
with values from neighboring patches at the same level of resolution. Fluxes
that reside at coarse cell faces at coarse/fine interfaces must be replaced by the
sum of the fluxes from adjacent fine cell faces.

Data movement is managed in SAMRAI by maintaining lists of the quan-
tities that must be moved and the pattern of data movement that is dictated
by the geometry of the grid hierarchy in separate data structures. This al-
lows a single specification of the quantities that must be transferred, as well
as flexibility in changing the pattern of data transfers as the hierarchy changes.
The quantities that must be moved are registered with CoarsenAlgorithms and
RefineAlgorithms (the former moves data from a level to a coarser level; the lat-
ter moves data from a level to one at the same or finer resolution). The pattern
of movement is represented by CoarsenSchedules and RefineSchedules. Suit-
able CoarsenOperators and RefineOperators are registered with these sched-
ules. Data transfer members that are used throughout the model application
are listed in Table 3.

Several other transfer algorithms are used locally during the calculation.
These are described in §4.3.1.

4 Interfaces to implicit timestepping and non-

linear solvers

New capabilities for performing implicit timestepping and solving systems of
nonlinear equations have been added to SAMRAI. These packages are designed
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Transfer Algorithm Source Destination Role

d fill new level current
solution

current
solution

initialize data after regrid-
ding

d flux coarsen flux coarse/fine
flux

correct fluxes on faces of
coarse cells the coarse/fine in-
terfaces

d soln fill nonlinear
solver
soln

scratch
soln

Update ghosts before before
computation

d soln coarsen nonlinear
solver
soln

nonlinear
solver
soln

Overide coarse soln with fine
soln

d scratch soln coarsen scratch
soln

scratch
soln

Overide coarse soln with fine
soln in scratch space

Table 3: Action of various transfer algorithms. Corresponding schedules are
created from these.

to leverage existing high-quality implementations of inexact Newton methods
found in KINSOL and PETSc. At the same time, care is being taken to make the
interfaces general and flexible enough to accommodate custom user approaches.
In the future, additional interfaces to nonlinear multigrid methods will be de-
veloped.

Our example uses the backward Euler implicit time discretization. This
serves as a useful archetype for exploring the issues needed to create general
and flexible capabilities. Support for higher order time discretization will follow.
Our outline for the backward Euler method appears in Table 4

Procedure BEM: Backward Euler Method

Set t = t0, n = 0, u(0) = u0.
Choose an initial ∆t.
Do {

Do {

Choose an initial approximation for u(n+1).

Solve F (u; u(n)) = 0.

if (u(n+1) is not satisfactory) {
Reduce ∆t

}

} (until u(n+1) is satisfactory.)
Update solution.
t = t + ∆t, n = n + 1.
Choose a new ∆t.
} (while t ≤ tfinal.)

Table 4: Outline of backward Euler method.

Figure 3 depicts the general organization of relations among the various com-
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ponents. The ImplicitIntegrator orchestrates the timestepping procedure. It
calls a number of methods to advance the solution in time. These are organized
into methods for treating the spatial and temporal discretization.

evaluateJacobian

User−Supplied Routines

solve
initialize

NonlinearSolverStrategy

initialize

updateSolution
checkSolution
getNextDt
advanceSolution

ImplicitIntegrator

setupSolutionVector
setInitialGuess
getNextDt
checkSolution
updateSolution

ImplicitIntegratorStrategy

jacobianTimesVector
precondSolve
precondSetup
evaluateNonlinearFunction
KINSOLAbstractFunctionsPETSc

KINSOL

getFromRestart
getFromInputinitialize

solve

SNES−SAMRAIContext

solve getFromRestart
getFromInputinitialize

KINSOL−SAMRAIContext

SNESAbstractFunctions

applyPreconditioner
setupPreconditioner
evaluateNonlinearFunction

jacobianTimesVector

Figure 3: Organizational structure of implicit timestepping and nonlinear solver
interfaces.

Methods for treating temporal discretization are defined in the
ImplicitIntegratorStrategy. This is a pure abstract class that only defines
interfaces; the implementations must be provided by the user.

Interfaces for solving the system of nonlinear equations are defined in the
NonlinearSolver. This is also a pure abstract class that only defines interfaces.
Interfaces to two concrete nonlinear solvers have been written: KINSOL and
the SNES package in PETSc. These both implement inexact Newton methods.
Interfaces to required and optional user-supplied methods are specified in the
AbstractFunctions classes.

Leveraging KINSOL and PETSc was facilitated by the fact that both are
written in terms of operations on vectors. This was accomplished by providing
a definition of vectors on SAMR grids, together with a suitable set of operations
that act directly on storage locations managed by SAMRAI. These vectors also
provide a natural way to apply the implicit integrator to problems that involve
more than one variable each gridpoint.

The following sections provide more detailed discussion of the interfaces
to user-provided methods. First, a general notion of vectors on SAMR grids,
and their specialization to KINSOL and PETSc vectors, is discussed. Next, the
interfaces defined in the ImplicitIntegratorStrategy are discussed. Finally,
the interfaces defined in the NonlinearSolver and AbstractFunctions are
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described.

4.1 SAMRAI vectors

Typically, vectors are used as containers for any number of variables that possi-
bly have different grid centerings. In the simplest use, a single variable defined
on a single global grid is mapped to a single-indexed vector using some ordering
scheme; lexicographical ordering is the usual choice. When multiple variables
are present in a simulation, a variety of mappings are possible. For example,
storage can be mapped to single-index vector locations one variable at a time,
or one grid cell at a time (sometimes referred to as block mappings). When
mixed centerings are used, as happens, for example, in a staggered grid dis-
cretization for fluids in which the velocity field is face-centered and the pressure
is cell-centered, a bit more care is needed due to the different number of grid
locations for each type of grid centering.

The concept of a vector gets stretched a bit in a distributed memory environ-
ment. Additional bookkeeping for mapping portions of vectors onto processors
is needed. Often the notion of a global index as well as local indices is employed.
Nevertheless operations can readily be defined on such distributed vectors with-
out difficulty.

Note that it is often the case that a dual description of the data is maintained
in a code, if only implicitly. In one description the data resides in contiguous
single-indexed locations. In another the grid-based nature of the data is used
through references to nearest neighbors using offsets into other single-indexed
locations. In fully unstructured calculations this idea is generalized by sup-
plementing the vector representation with neighbor lists associated with each
vector index.

A SAMR grid introduces new complications. For one thing, not all grid
locations on all grid levels are part of the solution. For another, the grid can
change dynamically during the course of the calculation. This is handled in
SAMRAI through a SAMRAIVector, which is simply a container analogous to the
usage described in the preceding paragraphs. Different variable-context pairs
are registered as components of the vector. A pointer to the grid hierarchy
over which the variables are defined is included in a SAMRAIVector. Vector
operations that are suitable for the different possible types of grid centerings,
along with appropriate lookup operations, are also provided. Recall from the
discussion in §3.2 that actual storage locations require both the variable-context
pair together with a specific patch from a level in the grid hierarchy; all of this
information is present within a SAMRAIVector. This structure is depicted in
Figure 4.

It is also possible to register a weight vector that applies to one or more
components that are registered with the SAMRAIVector. This weight can be
used to serve several purposes. For one, it can be used to mask data on coarse
levels that are covered by a finer level. It can also be used to store quadrature
information that reflects the manner in which the discretization is derived. For
example in the discretization derived in §2, it is natural to define a norm by
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pressure weights
velocity weights

Weights

velocity
pressure

CellDataOps

FaceDataOps

SAMRAIVector

Pointer to Grid Hierarchy

Operations Components

Figure 4: Layout of a SAMRAIVector.

summing over the levels in the hierarchy, patches in each level, and indexes in
each patch:

‖f‖2 =
1

V

∑

L∈H

∑

P∈L

∑

(i,j,k)∈P

|fi,j,k|
2Vi,j,k

where V is the volume of the domain Ω and

Vi,j,k =

{

volume of Ωi,j,k if cell (i, j, k) is not covered by a finer cell
0 otherwise

This definition of a norm has the property that the norm of a constant is inde-
pendent of the grid. This can be accomplished by a suitable initialization of a
weight vector.

KINSOL N vectors and PETSc Vecs are distinct and have different oper-
ations defined that are determined by the way they are used in their respec-
tive solver packages. A SAMRAI version of these are obtained by wrapping a
SAMRAIVector to provide the needed interfaces. This is illustrated in Figure 5.
There is minimal additional storage overhead, and maintenance is simplified.

There is one final point worth noting. Not all variables require ghost cells.
KINSOL and PETSc both create internal workspace by cloning vectors specified
by the user. Including ghost cells in vectors could lead to an unacceptable
storage overhead. Also, embedding ghost cells in a vector could reduce the effi-
ciency of vector operations by requiring non-unit strides between vector elements
separated by ghost cells. This choice has consequences for how user-defined op-
erations must be implemented and are discussed in §4.3

4.2 Interfaces for controlling timestepping

Interfaces for controlling timestepping are defined in
ImplicitIntegratorStrategy. The intention is to provide the user with com-
plete control over how the solution is advanced in time. Consequently this is a
pure abstract class with no implementations. In the future, some implementa-
tions that can be overridden will be considered.
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PVodeTrioAbstractVector operations

PVodeTrioAbstractVector

N_Vector operations PETSc Vec operations

PETScAbstractVector operations

PETScAbstractVector

N_Vector Vec

PVodeTrioAbstractVector operations

SAMRAIVector*

PVodeTrio_SAMRAIVector
PETScAbstractVector operations

PETSc_SAMRAIVector

SAMRAIVector*

Figure 5: A SAMRAIVector is wrapped to provide interfaces and operations
specific to KINSOL and PETSc. KINSOL uses the N Vector objects which are
typedef’d to PVodeTrioAbstractVector*. The PVodeTrioAbstractVector

class provides the translation between N Vector operations and C++ inter-
faces. The wrapper class PVodeTrio SAMRAIVectormatches that interface. The
PETSc solver interfaces works similarly.

4.2.1 setupSolutionVector

Here the user registers all variables that comprise the solution of the problem.
In this example only one component, d solution, is registered.

4.2.2 setInitialGuess

If ∆t is small enough, the solution at the current time may provide a good
initial approximation for the next nonlinear solve. Alternatively, given some
information from previous timesteps, it may be useful to extrapolate solution
information in time to compute a new initial approximation. To accomplish this,
one or more new contexts would need to be introduced and managed properly
in updateSolution.

In this example, the solution at the current time is supplied as an initial
approximation for the time-advanced solution. Implementation of a more so-
phisticated approach is deferred.

4.2.3 checkSolution

Once the nonlinear solver returns, it must be determined whether or not the
solution should be accepted. For example, if the nonlinear solver failed to con-
verge, the new solution should be rejected. Possible actions include reducing
∆t and trying again, or shutting down the computation. If the nonlinear solver
converges, the new solution should be tested to determine whether the tempo-
ral error is acceptable. If not, the solution should be rejected, ∆t should be
reduced, and a new timestep should be attempted.
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In this example, all solutions returned by the nonlinear solver are accepted.
Implementation of a more sophisticated approach is deferred.

4.2.4 updateSolution

Once a solution is accepted, storage locations for the solution at various time
levels needs to be manipulated. For example, the current solution should be
discarded, and the new solution copied into storage for the current solution. If
more than one previous timestep is maintained, then the list of timesteps must
be managed accordingly.

In this example, only the current and new solution are maintained.

4.2.5 getNextDt

∆t for the next timestep should be computed here. In this example, the initial
timestep that was set through an input file is returned. A more sophisticated
strategy might estimate the magnitude of the second derivative in time and use
this together with a local error tolerance to set ∆t.

4.3 Interfaces to the nonlinear solvers

Both KINSOL and SNES are organized so that they can be used by providing
methods with prescribed signatures that implement the following operations:

• evaluation of the nonlinear function;

• evaluation of the Jacobian;

• evaluation of Jacobian-vector products;

• initialization of a preconditioner;

• application of a preconditioner.

Of these, only the first is absolutely required.
These packages also both provide a wide range of options that can be used to

tune the performance of the nonlinear solver. These options can be set through
an input file or through a collection of access functions.

Note that KINSOL and SNES have slightly different approaches to prescribing
these interfaces. KINSOL does not prescribe an interface for evaluating the
Jacobian; rather, an argument in the signature of the function for calculating
Jacobian-vector products indicates whether the Jacobian should be re-evaluated.

In the interest of brevity, only the methods needed by KINSOL will be de-
scribed. The methods needed by SNES are quite similar. Also, the full signa-
tures of the operations are not used in the subsection titles; they can be found
by inspecting the header files of the implementation. Briefly, the interfaces pre-
scribed by KINSOL have been preserved. The only exception is the argument
that serves as a pointer to the user’s data. Since these functions are imple-
mented in the user class, all user data is available because of the scoping rules
in C++.
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4.3.1 evaluateNonlinearFunction(x,r)

The task here is to compute the discrete form of F (u; u(n)) in (2) on the mul-
tilevel grid. A general outline of how this is done appears in Table 5. In the
implementation, details of the data and information lookup might tend to ob-
scure the simplicity of this outline.

for each level in the hierarchy, finest to coarsest {
for each patch in the level {

compute face fluxes in (10)
adjust computation at physical boundaries

}
if not on the coarsest level {

save fluxes in an OutersideVariable

}
if not on the finest level {

copy saved fluxes from finer level to cell faces at coarse/fine interfaces
}
for each patch in the level {

evaluate the exponential term
evaluate the source term
combine all contributions (7), (8), and (9), including differencing

the fluxes to complete evaluation of (10)
}

}

Table 5: Outline of nonlinear function evaluation.

Before operating on any data, it is important to note that the input ar-
gument x has no ghost cells, and must be supplied with values to satisfy off-
patch data dependencies. This must be done with transfer operations similar
to those discussed in §3.3. However, the argument x could in fact be any vec-
tor created by the nonlinear solver. Thus, it is impossible to decide outside
of this function what storage should serve as the source of the transfer. Thus,
a RefineAlgorithm is created that designates x as the source of the transfer
and the scratch solution as the destination (recall from Table 2 in §3.2 that the
scratch storage context for the solution variable has one layer of ghost cells).
Then, in a loop over levels in the hierarchy, this RefineAlgorithm is used to
reset a cached RefineSchedule on each level, and the indicated data transfer
is performed using fillData. (The cached RefineSchedule describes the data
movement for a similar RefineAlgorithm on the current hierarchy configura-
tion and is recreated each time the hierarchy changes.) This causes both the
interior of the solution scratch storage to be copied from x, as well as ghost cells
of the solution scratch storage to be filled on each patch.

It is worth making a few further observations on the outline that appears in
Table 5.

1. All evaluation of fluxes and integrals is done in Fortran computational
routines. Pointers to storage locations are retrieved using appropriate
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access functions. These computations can actually be done in any lan-
guage, provided that the geometry of the patch, presence of ghost cells,
and gridpoint ordering conventions are all properly accounted for.

2. While not included in this outline, it may be necessary to adjust fluxes
computed on the fine side of coarse/fine faces. This depends on the choices
used to refine data to ghost cells on the fine level and how fluxes on the
fine side of the coarse/fine faces are computed. Obtaining an index space
description of the level edge (the set of indices of fine cells that reside at
coarse/fine interfaces) is relatively straightforward to accomplish using a
combination of index shifts and boolean set complement operations.

3. Recall the discussion of §2.3. Here the adjustment of the fluxes to account
for boundary values is done in a separate step. While it is possible to
perform this adjustment in a fixup loop inside the function that evaluates
face fluxes, geometric information that describes which part of the patch
is adjacent to a physical boundary is not readily available. After the
flux is evaluated, the needed geometric information can be retrieved using
functionality provided by SAMRAI and the adjustment of fluxes along
physical boundaries can be done in a separate function call. It is also
possible to perform these adjustments directly in C++ by using iterators
over suitable patch indices.

4. To conserve memory, the storage associated with the fluxes is allocated
and dealloacted level by level.

5. Some care is needed to similarly manage the storage for the
OutersideVariable on the fly: it is allocated on all but the finest level
just prior to being copied to, and deallocated on all levels right after being
copied from.

6. The actual transfer of data to correct fluxes at coarse/fine interfaces is
done with the d flux coarsen, discussed in §3.3. Since the grid hierar-
chy can change during the course of the calculation, the corresponding
CoarsenSchedule is recreated each time the hierarchy changes.

4.3.2 jacobianTimesVector(v,Jv)

This operation is almost identical to evaluateNonlinearFunction, so it is not
described in detail. The main difference lies in the final assembly: there the
exponential term has been evaluated at the current nonlinear iterate and mul-
tiplies the input vector v. Considerations that applied to x in
evaluateNonlinearFunction also apply here to v, i.e., operations are per-
formed on a copy of v that has been supplemented by ghost cells.

4.3.3 precondSetup()

In this application, the Jacobian (10) is essentially a generalized Poisson oper-
ator. The FAC Poisson solver provided with SAMRAI is designed for precisely
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this kind of problem. Thus, setup amounts to setting up and initializing the
data structures needed by the Poisson solver.

Specifically, problems of the form

−∇(b∇u) + au = f

can be solved, where a is a cell-centered array, b is a face-centered array, and
u and f are cell-centered arrays. In this case, b = D from (1) and a = λeuk ,
where uk is the current inexact Newton iterate. Setup consists of initializing
the appropriate variables and registering them with the FAC Poisson solver.

4.3.4 precondSolve(r,z)

Here the task is to solve
Mz = r.

The right hand side is registered with the FAC Poisson solver, which is then
used to solve the preconditioning system. Note that the scratch solution, which
is equipped with ghost cells, is used for this solve. The output from the solve
is copied to the appropriate argument upon completion of the solve. Ghost cell
data is stripped from the solution in this copy.
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